If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+0.5x-12=0
a = 1; b = 0.5; c = -12;
Δ = b2-4ac
Δ = 0.52-4·1·(-12)
Δ = 48.25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0.5)-\sqrt{48.25}}{2*1}=\frac{-0.5-\sqrt{48.25}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0.5)+\sqrt{48.25}}{2*1}=\frac{-0.5+\sqrt{48.25}}{2} $
| (13x+2)(4x+1)=3/4 | | 3x+-6=1 | | 2y/3+7=15 | | 2x-6x/48=8x-2+4 | | 0.25(4f-3)/100=5/100(10f-9) | | V=3.14r^2/3 | | 9a-7=14=2a | | 26x^2=56 | | |6x−5|=|5x+5| | | (1+r)^10=528938/547821/ | | (1+r)^10=528938/547821 | | (2/5)^3×(2/5)-6=(2/5)2p-1 | | 5x+3=43x= | | 2.4-m/2=10 | | 10(4x)=5 | | (4x-11)-(x-4)=8 | | 4(x-2)=3x=10 | | 2.x+10=48 | | 40.x-140=220 | | Xx17=224 | | -3y(y-1)+2y=4(y-3) | | 8x=6+30 | | 4^0.14x=5 | | y+3=10y | | 2x^{5}+24x=14x^{3} | | 10x-70+2x+3=180° | | (5x)-14=8x+4 | | 0.12=11/x | | 3=u/7.68 | | 3(4y-6)=2y+5 | | x=-2/3(-3)-3 | | 10x-70°+2x+3°=180° |